Cells adapted to high NaCl have many DNA breaks and impaired DNA repair both in cell culture and in vivo.

نویسندگان

  • Natalia I Dmitrieva
  • Qi Cai
  • Maurice B Burg
چکیده

Acute exposure of cells in culture to high NaCl damages DNA and impairs its repair. However, after several hours of cell cycle arrest, cells multiply in the hypertonic medium. Here, we show that, although adapted cells proliferate rapidly and do not become apoptotic, they nevertheless contain numerous DNA breaks, which do not elicit a DNA damage response. Thus, in adapted cells, Mre11 exonuclease is mainly present in the cytoplasm, rather than nucleus, and histone H2AX and chk1 are not phosphorylated, as they normally would be in response to DNA damage. Also, the adapted cells are deficient in repair of luciferase reporter plasmids damaged by UV irradiation. On the other hand, the DNA damage response activates rapidly when the level of NaCl is reduced. Then, Mre11 moves into the nucleus, and H2AX and chk1 become phosphorylated. Renal inner medullary cells in vivo are normally exposed to a variable, but always high, level of NaCl. As with adapted cells in culture, inner medullary cells in normal mice exhibit numerous DNA breaks. These DNA breaks are rapidly repaired when the NaCl level is decreased by injection of the diuretic furosemide. Moreover, repair of DNA breaks induced by ionizing radiation is inhibited in the inner medulla. Histone H2AX does not become phosphorylated, and repair synthesis is not detectable in response to total body irradiation unless NaCl is lowered by furosemide. Thus, both in cell culture and in vivo, although cells adapt to high NaCl, their DNA is damaged and its repair is inhibited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

DNA double-strand breaks induced by high NaCl occur predominantly in gene deserts.

High concentration of NaCl increases DNA breaks both in cell culture and in vivo. The breaks remain elevated as long as NaCl concentration remains high and are rapidly repaired when the concentration is lowered. The exact nature of the breaks, and their location, has not been entirely clear, and it has not been evident how cells survive, replicate, and maintain genome integrity in environments ...

متن کامل

Analysis of DNA breaks, DNA damage response, and apoptosis produced by high NaCl.

We previously reported that, both in cell culture and in the renal inner medulla in vivo, elevating NaCl increased the number of DNA breaks, which persisted as long as NaCl remained high but were rapidly repaired when NaCl was lowered. Furthermore, those breaks did not induce the DNA repair protein gammaH2AX or cause activation of the MRN (Mre11, Rad50, Nbs1) complex. In contrast, others recent...

متن کامل

Invited Review DNA damage and osmotic regulation in the kidney

Dmitrieva, Natalia I., Maurice B. Burg, and Joan D. Ferraris. DNA damage and osmotic regulation in the kidney. Am J Physiol Renal Physiol 289: F2–F7, 2005; doi:10.1152/ajprenal.00041.2005.—Renal medullary cells normally are exposed to extraordinarily high interstitial NaCl concentration as part of the urinary concentrating mechanism, yet they survive and function. Acute elevation of NaCl to a m...

متن کامل

DNA damage and osmotic regulation in the kidney.

Renal medullary cells normally are exposed to extraordinarily high interstitial NaCl concentration as part of the urinary concentrating mechanism, yet they survive and function. Acute elevation of NaCl to a moderate level causes transient cell cycle arrest in culture. Higher levels of NaCl, within the range found in the inner medulla, cause apoptosis. Recently, it was surprising to discover tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 8  شماره 

صفحات  -

تاریخ انتشار 2004